32,100 research outputs found

    Flux sensing device using a tubular core with toroidal gating coil and solenoidal output coil wound thereon Patent

    Get PDF
    Flux gate magnetometer with toroidal gating coil and solenoidal output coil for signal modulation or amplificatio

    Further results on independent Metropolis-Hastings-Klein sampling

    Get PDF
    Sampling from a lattice Gaussian distribution is emerging as an important problem in coding and cryptography. This paper gives a further analysis of the independent Metropolis-Hastings-Klein (MHK) algorithm we presented at ISIT 2015. We derive the exact spectral gap of the induced Markov chain, which dictates the convergence rate of the independent MHK algorithm. Then, we apply the independent MHK algorithm to lattice decoding and obtained the decoding complexity for solving the CVP as Õ(e∥Bx-c∥2 / mini ∥b̂i∥2). Finally, the tradeoff between decoding radius and complexity is also established

    A Random Walk Down Main Street: Can Experts Predict Returns on Commercial Real Estate?

    Get PDF
    We examine the ability of experts, specifically institutional owners and managers, to predict commercial real estate return performance in major metropolitan markets and on various property types. We find no evidence that the consensus opinions on investment conditions contained in Real Estate Research Corporation?s quarterly Real Estate Investment Survey are useful in forecasting subsequent return performance. In fact, we document that RERC?s surveys are backward looking. The implications of these findings for investors are discussed.

    Linear Size Optimal q-ary Constant-Weight Codes and Constant-Composition Codes

    Full text link
    An optimal constant-composition or constant-weight code of weight ww has linear size if and only if its distance dd is at least 2w12w-1. When d2wd\geq 2w, the determination of the exact size of such a constant-composition or constant-weight code is trivial, but the case of d=2w1d=2w-1 has been solved previously only for binary and ternary constant-composition and constant-weight codes, and for some sporadic instances. This paper provides a construction for quasicyclic optimal constant-composition and constant-weight codes of weight ww and distance 2w12w-1 based on a new generalization of difference triangle sets. As a result, the sizes of optimal constant-composition codes and optimal constant-weight codes of weight ww and distance 2w12w-1 are determined for all such codes of sufficiently large lengths. This solves an open problem of Etzion. The sizes of optimal constant-composition codes of weight ww and distance 2w12w-1 are also determined for all w6w\leq 6, except in two cases.Comment: 12 page

    Computation of the para-pseudoinverse for oversampled filter banks: Forward and backward Greville formulas

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2008 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.Frames and oversampled filter banks have been extensively studied over the past few years due to their increased design freedom and improved error resilience. In frame expansions, the least square signal reconstruction operator is called the dual frame, which can be obtained by choosing the synthesis filter bank as the para-pseudoinverse of the analysis bank. In this paper, we study the computation of the dual frame by exploiting the Greville formula, which was originally derived in 1960 to compute the pseudoinverse of a matrix when a new row is appended. Here, we first develop the backward Greville formula to handle the case of row deletion. Based on the forward Greville formula, we then study the computation of para-pseudoinverse for extended filter banks and Laplacian pyramids. Through the backward Greville formula, we investigate the frame-based error resilient transmission over erasure channels. The necessary and sufficient condition for an oversampled filter bank to be robust to one erasure channel is derived. A postfiltering structure is also presented to implement the para-pseudoinverse when the transform coefficients in one subband are completely lost

    Convolutional compressed sensing using deterministic sequences

    Get PDF
    This is the author's accepted manuscript (with working title "Semi-universal convolutional compressed sensing using (nearly) perfect sequences"). The final published article is available from the link below. Copyright @ 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.In this paper, a new class of orthogonal circulant matrices built from deterministic sequences is proposed for convolution-based compressed sensing (CS). In contrast to random convolution, the coefficients of the underlying filter are given by the discrete Fourier transform of a deterministic sequence with good autocorrelation. Both uniform recovery and non-uniform recovery of sparse signals are investigated, based on the coherence parameter of the proposed sensing matrices. Many examples of the sequences are investigated, particularly the Frank-Zadoff-Chu (FZC) sequence, the m-sequence and the Golay sequence. A salient feature of the proposed sensing matrices is that they can not only handle sparse signals in the time domain, but also those in the frequency and/or or discrete-cosine transform (DCT) domain

    Tail Asymptotics of Deflated Risks

    Get PDF
    Random deflated risk models have been considered in recent literatures. In this paper, we investigate second-order tail behavior of the deflated risk X=RS under the assumptions of second-order regular variation on the survival functions of the risk R and the deflator S. Our findings are applied to approximation of Value at Risk, estimation of small tail probability under random deflation and tail asymptotics of aggregated deflated riskComment: 2

    Dual-lattice ordering and partial lattice reduction for SIC-based MIMO detection

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2009 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.In this paper, we propose low-complexity lattice detection algorithms for successive interference cancelation (SIC) in multi-input multi-output (MIMO) communications. First, we present a dual-lattice view of the vertical Bell Labs Layered Space-Time (V-BLAST) detection. We show that V-BLAST ordering is equivalent to applying sorted QR decomposition to the dual basis, or equivalently, applying sorted Cholesky decomposition to the associated Gram matrix. This new view results in lower detection complexity and allows simultaneous ordering and detection. Second, we propose a partial reduction algorithm that only performs lattice reduction for the last several, weak substreams, whose implementation is also facilitated by the dual-lattice view. By tuning the block size of the partial reduction (hence the complexity), it can achieve a variable diversity order, hence offering a graceful tradeoff between performance and complexity for SIC-based MIMO detection. Numerical results are presented to compare the computational costs and to verify the achieved diversity order

    Gamma-Ray Spectral Characteristics of Thermal and Non-Thermal Emission from Three Black Holes

    Full text link
    Cygnus X-1 and the gamma-ray transients GROJ0422+32 and GROJ1719-24 displayed similar spectral properties when they underwent transitions between the high and low gamma-ray (30 keV to few MeV) intensity states. When these sources were in the high gamma-ray intensity state (gamma-2, for Cygnus X-1), their spectra featured two components: a Comptonized shape below 200-300 keV with a soft power-law tail (photon index >3) that extended to ~1 MeV or beyond. When the sources were in the low-intensity state (gamma-0, for Cygnus X-1), the Comptonized spectral shape below 200 keV typically vanished and the entire spectrum from 30 keV to ~1 MeV can be characterized by a single power law with a relatively harder photon index ~2-2.7. Consequently the high- and low-intensity gamma-ray spectra intersect, generally in the ~400 keV - 1 MeV range, in contrast to the spectral pivoting seen previously at lower (~10 keV) energies. The presence of the power-law component in both the high- and low-intensity gamma-ray spectra strongly suggests that the non-thermal process is likely to be at work in both the high and the low-intensity situations. We have suggested a possible scenario (Ling & Wheaton, 2003), by combining the ADAF model of Esin et al. (1998) with a separate jet region that produces the non-thermal gamma-ray emission, and which explains the state transitions. Such a scenario will be discussed in the context of the observational evidence, summarized above, from the database produced by EBOP, JPL's BATSE earth occultation analysis system.Comment: 6 pages, 3 figures, accepted for publication in Proceedings of 2004 Microquasar Conference, Beijing, China, Chinese Journal of Astronomy and Astrophysics, minor corrections per refere
    corecore